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VIRTUAL2D: A web-accessible predictive database
for proteomics analysis

The available archive of sequence databases compiled from whole genome projects
and budding proteomics efforts have enabled us to develop VIRTUAL2D, an interactive
system for the assembly of virtual protein expression maps computed on the basis of
theoretical isoelectric focusing point, molecular weight, tissue specificity and relative
abundance for any set of proteins currently catalogued. This tool will assist in the
preliminary, albeit putative, prediction of the identity and location of unknown and/or
low abundance proteins in experimentally derived two-dimensional polyacrylamide
gel electrophoresis maps.
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1 Introduction

One of the most attractive features of 2-D PAGE [1, 2] is its
potential to simultaneously display the electrophoretic
signatures of complex mixtures of proteins directly from
cellular extracts. Continuous progress made over the past
two decades in sample treatment, labeling chemistry [3],
automation [4], spot detection [5] and image analysis [6]
have combined to transform 2-D PAGE from a labor-inten-
sive, multi-process technique to a powerful, highly repro-
ducible tool that is becoming an integral part of many com-
prehensive proteomic efforts. When used in tandem with
other methodologies such as in-gel digestion [7], high
resolution mass spectrometry [8] and peptide mapping [9]
(many of which can now be run continuously in stand-
alone mode), it can provide the front-end for a high-
throughput peptide identification scheme [10]. The utility
of such schemes are represented by several richly anno-
tated and comprehensive proteomics databases many of
which are publicly available on the World Wide Web [11].
Unfortunately, these techniques require substantial finan-
cial, labor and time commitments, which place them out of
the scope of many laboratories. In addition, because these
are developed and maintained by teams of researchers
focusing on a particular class of proteins or diseases, typi-
cally only a very small fraction of the expressed proteins

are identified on these protein expression maps (PEM)
[12]. Thus evolved the need to develop a convenient and
instantaneous means to predictably identify the unknown
protein spots, which in fact constitute the overwhelming
proportion of 2-D PAGE data currently available.

2 Materials and methods

2.1 Modeling and computational approach

The advent of immobilized pH gradients [13] in the first
dimension has ushered in an era where reproducible,
high-resolution measurements can routinely be carried
out, making it conceivable to predict from the primary
sequence, the focusing positions of proteins within a pH
gradient. When solubilized with high concentrations of
urea (9–10 M), proteins unfold and only the ionizable
groups or those amino acids located at the N- or C-ter-
minally amino acids will affect the electrophoretic mobil-
ity of the extended conformation. Using a series of well
characterized peptides, Bjellqvist [14] determined the
pK values of all the amino acids in similar experimental
conditions. The approach that we used to determine
the isoelectric focusing point and molecular mass of a
peptide can then simply be summed up as follows:
(i) scan the primary sequence of the peptide, (ii) assign
the pK of each contributing amino acid according to
Table 1, (iii) sum up all the mass contributions.

The resulting pI/Mr is then given by the ratio of:

pItot � pKCterm � �intpKint � pKNterm� �
n � 2� � (1)

Correspondence: Dr. Djamel Medjahed, National Cancer Insti-
tute at Frederick, P.O. Box B, Frederick, Maryland 21702-1201,
USA
E-mail: medjahed@ncifcrf.gov
Fax: +1-301-846-6827

Proteomics 2003, 3, 129–138 129

ª 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0173-0835/03/0202–129 $17.50�.50/0



130 D. Medjahed et al. Proteomics 2003, 3, 129–138

Table 1. Values of amino acid masses and pK’s (deter-
mined [13] at high molar concentrations of urea)
used in pI/Mr computation. The segregation is
underscored by the fact that the pK’s of roughly
half the internal amino acids fall below pH 6.0
while for the rest they are greater than or equal
to 9.0.

Ionizable group pK Molecular Mass

C-terminal 3.55

N-terminal
Met 7.00 132.994
Thr 6.82 102.907
Ser 6.93 88.8800
Ala 7.59 72.8800
Val 7.44 100.934
Gli 7.70 130.917
Pro 8.36 98.9180

Internal
Asp 4.05 116.890
Glu 4.45 130.917
His 5.98 138.943
Cys 9.00 104.940
Tyr 10.0 164.978
Lys 10.0 114.961
Arg 12.0 157.989

C-terminal side chain groups
Asp 4.55 116.890
Glu 4.75 130.917

and

Mr tot = �i Mri

Where the pI summation runs over all n contributing, inter-
nal amino-acids.

2.2 Database mining

Queries using the Sequence Retrieval System (SRS) [15]
were carried out for each organism against the latest
combined releases of SWISS-PROT and TrEMBL data-
bases [16]. Using additional Boolean logic conditions,
peptide fragments were omitted from the final pI/Mr

computation. ExPASy’s pI/Mr tool [17] server was initially
used. To overcome data throughput bottlenecks that are
inherent to networks and web browsers, Perl scripts have
been developed to locally process files containing individ-
ual or multiple sequences in FASTA format. These could
represent entire proteomes and ultimately whole ge-
nomes. If applicable, cross-referencing with the NCBI’s
UniGene database [18] was made possible via the Gene
symbol attribute which can be found in many databases
(Fig. 1). The final data set consisted of protein entries

Figure 1. Data mining work flow. In principle, NCBI and
SWISS-PROT entries share a common user-supplied
Gene symbol field. Perl scripts were written to parse the
organism/tissue output in both databases and scan them
and organize it according to the common thread.

whose sequences have either actually been experimen-
tally determined and submitted or predicted in reference
to the ORF’s from the corresponding genome.

3 Results

3.1 Analysis

Using the values in Table 1, and the primary sequences
found in the latest release of SWISS-PROT/TrEMBL for
humans, Perl scripts were written to parse the data into a
tab-delimited format. The resulting plot of pI versus the
molecular mass, yields a theoretical 2-D PAGE map with
a striking bimodal distribution (Figs. 2 and 4). A total of
86 518 inferred or experimentally determined peptides
were included in this calculation. One obvious feature of
this map is the presence of a region seemingly devoid of
proteins centered on pH 7.4–7.5. As shown in Fig. 3, this
pattern is by no means unique to Homo sapiens and has
been reported for other organisms [18–20]. However, to
our knowledge, this distribution has never been reported
with the currently available human genome and proteome
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Figure 2. Proteins whose sequences were either experi-
mentally determined or inferred are extracted for Homo
sapiens from the latest combined SWISS-PROT-TrEMBL
databases and plotted in the broadest range typically
encountered in 2-D PAGE maps.

Figure 3. Other organisms surveyed from the same data-
bases display a similar bimodal pattern a) E-coli; b) C. ele-
gans; c) Mouse; d) Plasmodium falciparum.

data. The biochemical justification most often advanced
in explanation of this observation is that the majority of
proteins would tend to naturally precipitate out of solution
around the cytoplasmic pH of approximately 7.2. The pI
is the pH for which the protein charge is overall neutral.
It therefore represents the point of minimum solubility
due to the absence of electrostatic repulsion, resulting in
maximum aggregation.

While this provides an explanation for experimental 2-D
PAGE maps, we must remember that no such correction
was incorporated in the modeling. What then is the basis
for the separation of proteins into acidic and basic
domains in computed pI/Mr charts? In our efforts to
answer these questions, we carried out a simulation

whereby groups of 1545 peptides varying in length from
50 to 600 amino acids (AA), in increments of 10 were
randomly generated. This brings the total number of
simulated sequences to 86 520 versus 86 518 real pep-
tides extracted from current databases, thereby improv-
ing the prospects of any meaningful comparative statis-
tics. As mentioned earlier, the calculation of the pI values
is carried out iteratively. The pK of a peptide is calculated
by tallying the contributions to the charge from the N-ter-
minus, the C-terminus and the internal portion of the pep-
tide. As can be observed in Fig. 4, the resulting simulated
pI/Mr distribution is strikingly similar to that adopted by
the extracted sequences. While this may seem surprising
at first, given the total absence of bias in both the lengths
and content of the peptides used for the simulation, it is in

Figure 4. (a) Histogram of pI
“real” values extracted from
the latest combined release
of SWISS-PROT/TrEMBL, for
H. sapiens. The data points
are grouped in bins that are
0.25 pH units wide. (b) Histo-
gram of pI values, simulated
data for each group, 1543
sequences are randomly simu-
lated ranging from 50–600
amino acids in length, in incre-
ments of 10.
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fact a direct consequence of the constraints imposed by
a limited proteomic alphabet of twenty amino acids with
distinct pK’s roughly half of which are either acidic or
basic (Table 1).

In fact, only seven internal amino acids make non-zero
contributions to the pI of the peptide. These seven amino
acids are: cysteine, aspartic acid, glutamic acid, histidine,
lysine, arginine and tyrosine. It is reasonable to suspect
that a high percentage of the variation in the calculated
pI values of the simulated data would be modulated by
the representation of these seven amino acids as the
majority of the contribution to the charge comes from
the internal portion of the peptide. To investigate the
actual contribution of these seven amino acids in deter-
mining an overall pI value, a multiple regression model
was developed using the adjusted numbers of these
seven amino acids as predictor variables and the pI value
as the dependent variable. The adjusted count for an
amino acid is equal to the actual number of times the
amino acid is found in the peptide divided by the length
of the peptide. The adjusted counts will be denoted as
follows: aR = adjusted count for arginine; aC = adjusted
count for cysteine; aD = adjusted count for aspartic acid;
aE = adjusted count for glutamic acid; aK = adjusted
count for lysine; aH = adjusted count for histidine; aY =
adjusted count for tyrosine.

The regression model in question uses the linear, quad-
ratic and cubic powers for each adjusted number of the
seven amino acids that contribute to the pI calculation
when they are part of the interior of the protein. A total of
21 independent variables were employed in the regres-
sion analysis. This analysis yields a multiple correlation
factor R of 0.931. The coefficient of determination (the
square of the multiple R) gives the proportion of the total

variance in the dependent variable accounted for by
the set of independent variables in a multiple regression
model. For the model in question, 0.866 is the square of
the multiple R. Consequently, 86.6% of the total variation
in the pI values was accounted for by the aforementioned
seven amino acids. The simulation result confirms the
hypothesis that the total number of these seven amino
acids is the key factor in explaining the pI value of a
peptide.

The predicted pI score in the regression model is denoted
as pI’ and it is the dependent (criterion) variable in the
regression model. The equation for the regression model
is:

pI’ = a � �biXi (2)

where a is the intercept of the model, bi is the partial slope
for the ith predictor in the model and Xi is the ith predictor
in the model. There will be 21 different predictors in the
model: seven linear terms (aR, aC, aD, etc.), seven quad-
ratic terms (aR2, aC2, aD2, etc.) and seven cubic terms
(aR3, aC3, aD3, etc.). All parameters were estimated by
ordinary least squares using the SPSS 8.0 computer
package [21].

The coefficient of determination or R2 for the model is the
proportion of variance of the pI values accounted for by
the regression model. It is equal to the sum-of-squares
regression divided by the total sum-of-squares:

R2 � �pI� � Mean pI� �2

� pI � pI�� �2 (3)

In order to increase the analytical value of Virtual2D to
the scientific community, interactivity is built into these
plots by implementing the following features (displayed
in Fig. 5): (i) accessibility from the WWW (http://proteom.

Figure 5. On the fly interaction
and identification. By using the
controls, one can zoom in on a
particular area. Simply moving
the mouse over or clicking on
any spot will either display a
short description or bring up
comprehensive information from
the hyper-linked web server of
choice (Protplot uses Java code
modified from MicroArray Ex-
plorer).
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ncifcrf.gov/); (ii) zoom and click features; (iii) hyperlinks
between each data point and popular databases
(SWISS-PROT, NCBI, etc.). Depending on the actual
application, these features were implemented in JAVA by
modifying source code used in MAE (MicroArray Analysis
Explorer) [22] or PtPlot [23], two versatile web-aware dis-
play programs.

4 Discussion

4.1 Comparison with experimental data

We compared our computed pI/Mr values against those
reported experimentally in two cases. In the first exam-
ple, a high resolution map for Escherichia coli obtained

over a narrow pH range (4.5–5.5) was used. Theoretical
values of pI/Mr were computed and compared to the
experimental observations. Landmarks provided by
reference proteins whose characteristics were inde-
pendently confirmed can be used to calibrate positions
over the entire area of the image. pI, molecular masses
and relative intensities can then be determined by inter-
polation for all detected protein spots (Fig. 6a). One is
able to identify and select a reduced list of proteins
whose predicted pI/Mr values are fairly close to their
experimentally determined counterpart. This minimally
distorted “constellation” set, displayed in Fig. 6b can
then be used in principle to “warp” the two gels,
thereby aligning the experimental map on top of the
theoretical one.

Figure 6. (a) Comparison of
the values of IEF points and mo-
lecular mass extracted from a
high resolution E. coli 2-D PAGE
map downloaded from SWISS-
2-D PAGE and those computed
in this work. In the two upper
charts, a small number of cor-
responding data points from
each set have the same color
for a quicker visual inspection.
(b) For a small subset of pro-
teins, computed pI/Mr values
are fairly close to the experi-
mental counterparts, providing
a “constellation” of reference
points that can be used for
warping.
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Figure 7. The warping of a 2-D PAGE map on a com-
puted pI/Mr chart can be achieved by dividing it in areas
surrounding each pair of experimental (�) and predicted
(�) landmarks and applying to all the protein spots
belonging in a particular neighborhood the necessary
local translation to transform the coordinates (Xpred, Ypred)
to (Xexp, Yexp).

As an example, one can imagine dividing up the gel into
several regions around each one of these pairs of spots
so that for any given region, the local experimental land-
mark (closed circle) will be transformed to its predicted
counterpart (closed square) by a translation specific to
that neighborhood (Fig. 7). Any experimental spot (includ-
ing the landmark) within region 1 for instance will undergo
the same local translation defined by:

Xpred = Xexp ��X1 (4)
Ypred = Yexp ��Y1

where �X1 and �Y1 are the components of the local
translation needed to bring an experimental landmark
onto its predicted counterpart. If the spot happens to be
in region 3, then

Xpred = Xexp ��X3 (5)
Ypred = Yexp ��Y3

and so on.

For those areas without designated landmark such as
region 2, one can interpolate using the translations from
the surrounding neighborhoods.

Xpred = Xexp ��X2 where �X2 =
= (�X1 � �X3 � �X6)/3 (6)

Xpred = Yexp � �Y2 and �Y2 =
= (�Y1 � �Y3 � �Y6)/3

The outcome of this 2-D alignment is not a trivial task as
it is a function of several factors including the resolution
of the experimental gel (the higher, the better) as well as
the number and spatial distribution of landmark reference
points. It involves working out the transformations that
reflect the local distortions of the gel. Several software
packages [24–26] currently existing on the market offer
robust and flexible spot detection from many popular
image file formats coupled with sophisticated statistical
and warping tools.

In the second example, we (arbitrarily) selected and
downloaded from SWISS-2D PAGE a map of human
colorectal epithelia cells [27]. Figure 8 depicts the overlap

Figure 8. Overlap of pI/Mr ex-
perimental (�) and theoretical
values (�) for spots identified in
a 2-D PAGE map of human col-
orectal epithelial [27] obtained
from SWISS-2D PAGE.
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of observed and corresponding computed pI/Mr values
for 40 proteins. A quantitative measure of the discrepancy
between the two data sets can be obtained by using the
relative shift (r.s) of a protein spot between experimental
and theoretical values:

r.s = [(�pI/pIexp)2 � (�Mr/Mr exp)2]1/2

where

�pI = pIexp � pIpred and �Mr = Mr exp � Mr pred (7)

Despite the broad nominal intervals for pI (4–8 pH units)
and Mr (0–200 kDa), more than 66% of the predicted
values have a relative shift less than or equal to 0.12 com-
pared to their observed counterpart.

However, one must still face the reality of the numerous
modification types occurring co- and post-translationally
which can severely alter the electrophoretic mobility of
the proteins affected. As can be seen in Fig. 9, while rela-
tively small local differences can be easily be reconciled,
no amount of warping will be able to totally and correctly
align a collection of computed pI/Mr data points onto a set
of experimentally determined protein spots without indi-
vidually identifying and incorporating the aforementioned
corrections in the computation of these attributes.

4.2 Correlation to expressed sequence tag data

The relationship between mRNA levels and protein ex-
pression has been explored by a number of investigators
[28]. The data type generated by VIRTUAL2D, together

Figure 9. (a) Overlap of spots
identified in 2-D PAGE map of
human colorectal epithelial cell
line (green) and theoretically
computed (red). (b) Several pairs
of corresponding experimen-
tally predicted spots are con-
nected to reflect the transla-
tions. (c) A global warping at-
tempts to bring the computed
value closer to the correspond-
ing observed member of the
pair. While in some cases, an
almost exact local alignment
is achieved, in many instances
the differences caused by
post-translation modifications
are simply too large to success-
fully align them. This analysis
was carried out using a demon-
stration version of the Delta-2D
package [26].
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Figure 10. Bar graph comparison of relative frequency of
EST for the whole H. sapiens organism versus protein
expression levels derived from integrated optical densi-
ties of corresponding spots in 2-D PAGE map of colorec-
tal epithelial cells.

with sequence databases such as UNIGENE [29, 30], pro-
vides an excellent opportunity to directly address this
question. Analysing the high resolution 2-D PAGE map
of colorectal epithelium cells mentioned in Section 4.1,
the optical density and area of each of these spots were
used to determine the quantity of each protein relative to
that of the whole image. In the event that several isoforms
of the same protein are present in the gel (due to modifi-
cations), their contributions were summed. At the same
time, the corresponding number of EST ‘hits’ for each
protein was determined from a comprehensive survey of
human mRNA libraries.

The results shown in Fig. 10 indicate an overall preserved
trend (i.e., when the relative abundance of an mRNA
increases, so does the expression level of the corre-
sponding protein as seen on the 2-D PAGE map, albeit
not always linearly). The lack of a more stringent correla-
tive relationship between mRNA levels and protein abun-
dance is most likely due to the influence of post-transla-
tional gene regulation (i.e., mRNA stability, translational
efficiency and protein stability).

4.3 The hunt for disease markers, application to
cancer

One approach to uncover biological markers associated
with the early onset of disease is to detect statistically
significant differences in protein expression levels and
establish correlations with disease outcome or onset.
Prostate cancer is diagnosed every 2 1/2 min with approxi-
mately 200 000 new cases diagnosed each year in North
America [31]. It is the most common cancer in the United

Figure 11. Predicted pI/Mr maps of proteins expressed
in the prostate gland. Information for each histological
state is derived from EST data in the corresponding
CGAP Library (281-Normal, 282-PreCancer, 283-Normal).
A comprehensive prostate specific pI/Mr map would cor-
respond to the union of all three histological states.

States among men. The Cancer Genome Anatomy Pro-
ject (CGAP) [32, 33] is an interdisciplinary program estab-
lished and administered by the US National Cancer Insti-
tute (NCI) to generate the information and technological
tools needed to decipher the molecular anatomy of the
cancer cell.

The advent of laser capture microdissection (LCM) [34,
35] has provided the ability to procure a pure population
of cells that would give the most accurate results of ex-
pression profiling as a function of tissue state. We there-
fore decided to focus on LCM-generated, non-normal-
ized CGAP libraries of EST from the UniGene database
to minimize any bias inherent to the cloning method
used.

Of the libraries satisfying these criteria, three prostate-
related sets (281, 282 and 283) provide substantially
more data points and therefore a significantly better suit-
ed ensemble upon which to draw any meaningful statis-
tical conclusions. In addition, these samples cover all
three histological states of the disease and originate
from epithelial cells taken from the periurethral zone of
the prostate gland of the same patient.

By compiling the information from those ESTs that have
already been assigned to a specific gene, we can then
deduce the associated protein(s) and their respective
properties leading to a predicted pI/Mr chart for each
library. A comprehensive prostate map would then con-
sist of the union of all three maps. The results are shown
in Fig. 11. By combining the data obtained from similar
libraries (same tissue and histological state) and further
tracking the relative frequencies of occurrence of these
ESTs and assigning proportional intensities, one is able
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to build gray-scale theoretical protein expression maps
that are both tissue and histology specific. Figure 12
depicts the profiles of all gene products expressed in the
prostate gland in various cancer states. (The results of
this exhaustive survey will be thoroughly described in a
separate paper.)

Figure 12. Virtual 2-D expression maps of prostate
derived from pooling 13 UNIGENE libraries that span
three histological states: Normal (top), Pre-Cancer (mid-
dle) and Cancer (bottom). User-controlled handles for
zooming, web-server and tissue selection. The gray-scale
and relative spot intensities reflect the corresponding EST
frequencies in the pooled data set.

5 Concluding remarks

We propose in this work a simple, yet plausible, explana-
tion for the bimodal pI/Mr distribution observed experi-
mentally and predicted theoretically. To date, theoretical
maps for ninety-two organisms/proteomes compiled have
been computed and deposited within this database
(accessible on the web at http://proteom.ncifcrf.gov/). It
is designed to be a reference tool to assist investigators
in the putative assignment of proteins in whole genome
complements. It offers the ability to optimize a narrow
pH range, prior to actually running a 2-D PAGE experi-
ment, according to the expected attributes (pI, Mr) of
the proteins of interest. In addition, one is able to predict
the expression and approximate location of the unmodi-
fied isoform of gene products. If their expression level is
otherwise too low to be detected by traditional Coomas-
sie or silver staining, one may be able, through enrichment
techniques and enhanced imaging and data integration,
to improve the sensitivity of 2-D PAGE. This is of particular
importance in identifying and quantitatively profiling bio-
markers associated with the early onset of diseases such
as cancer through the various histological states and is
the focus of ongoing efforts. Eventually, the workflow on
the right-hand side of Fig. 13 will enable the user to input
a file representing an entire proteome and ultimately a
full-blown genome and produce the desired map.

Cross-referencing between the various databases was no
small task even though in principle, entries in ExPASy’s
SWISS-PROT and NCBI’s UniGene share a common key
(Gene symbol). In our experience, more than a third of the
assigned names were different enough to frustrate any

Figure 13. A snapshot of the screen display of VIR-
TUAL2D accessible at http://proteom.ncifcrf.gov. Protein
expression maps computed for fifty-three organisms/pro-
teomes using data obtained from the European Bioinfor-
matics Institute [36] can be displayed by clicking on any of
the entries on the left.
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attempts to automate the harvesting of overlapping infor-
mation. This highlights the need for better quality control
in these repositories and the enforcement of at least one
key/thread common to all existing life-science databases.
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